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30 Emerging Technologies

Technologies that, as of one year ago,
was expected to be put into practical use Impact Radar for 2024
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Digital Twin

Real Machine

il

E ‘i it i




Deployment of data science
technologies across all blast
furnaces at JFE Steelworks
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Blast furnace: highly complex process

Coke, Iron ore

Manual operation
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Control of hot metal temperature (HMT) is important
to realize an efficient and stable operation.



2D transient model of BF

® Finite volume method with adaptive cells
32 cells in height direction X 3 cells in radial direction

® Optimal balance between ACCURACY and SPEED

(a) Initial cells (b) Converged cells
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Operation guidance

® Nonlinear Dynamic Physical Model
® Moving Horizon Estimation (MHE)
® Nonlinear Model Predictive Control (NMPC)
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Achievement by guidance system
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We have achieved the significant reduction of
CO2 emission and the production cost of iron.



Al applications in process industries

® Case 1
= In-house generative AI service "ChatSCC”

m improved operational efficiency by a maximum of over 50%.

® Case 2
= Automation of new application discovery

m increased the discovery of new applications with agility and accuracy.

® Case 3
= AI-based autonomous operation

= achieved higher stability and efficiency of crude distillation unit (CDU)
® Case 4

= AI-based operation support system

m achieved operational efficiency improvements of 40%



Case 1:In-house generative Al

® In-house generative Al service "ChatSCC”
m Sumitomo Chemical

® Objective: dramatic improvement in productivity in the short term, enhancing
the competitiveness, and creating new business models

® Key features:
m Using ChatGPT
m Available for all of its approximately 6,500 employees
m Secure environment; input information will not leak outside

® Results: ChatSCC contributed to improving operational efficiency by a
maximum of over 50%.




EE' In-house generative Al service "ChatSCC"

Achieve a dramatic improvement in productivity in the short term with ChatSCC.

Use of ChatSCC for linking internal and
external data

Development and use of
specialized Al models
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ChatSCC improved operational efficiency by a maximum of
over 50% during the preliminary verification process Sumitomo Chemical Co., Ltd.



Case 2: New application discovery

® Automation of new application discovery

m Mitsui Chemicals + IBM Japan

® Objective: expanding top line sales and market share by advancing DX.
® Key features:

m Verifying higher agility and accuracy for new application discovery by
combining Generative Pre-trained Transformer (GPT) with IBM Watson
Discovery

® Results: GPT's generative and reasoning capabilities drastically increased the
discovery of new applications with agility and accuracy.

m Example: SNS analysis revealed many posts like "musty smell in the local
railway," which led to sales activities of antifungal products to railway
companies.




EE' Automation of new application discovery

Accelerate new application discovery with high agility and accuracy
by combining Generative Al (GPT) and IBM Watson.

information of new applications

- new application
candidate data
- keywords ~

optimized

instruction prompt new applications

Microsoft Azure OpenAl IBM Watson Discovery

GPT (Generative Pre-trained Transformer) external multimodal big data,

generates new candidates, and clarifies the such as patents, news, SNS, and videos

reason and external environmental factors



Case 3: Autonomous operation

® Al-based autonomous operation of crude distillation unit (CDU)
m ENEOS + Preferred Networks (PFN)

® Objective: improving stability of plant operations by reducing dependence on
skilled operators.

® Key features:
m Real application to CDU at the ENEOS Kawasaki Refinery
m The world’s first Al-based, continuous autonomous operation of CDU
m Monitoring 24 key operational factors and adjusting 13 valves

® Results: The Al system demonstrated higher stability and efficiency compared
with manual operations.

® ENEOS and PFN plan to deploy the Al systems to other refineries and later
provide them as a packaged solution to external parties as well.




EﬂAI—BQsed autonomous operafion of crude distillation unit (CDU) -

KYOTO

Improve stability of plant operations by reducing dependence on skilled operators.

The Al system monitors 24 key operational factors and adjusts 13 valves to stabilize the CDU.
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Preferred Networks, Inc.



Case 4: Operation support

® Al-based operation support system

m NEC, National Institute of Advanced Industrial Science and Technology
(AIST), Mitsui Chemicals, and Omega Simulation

® Objective: developing an operation support system to improve operational
efficiency

® Key features:
m Combining Logical Thinking Al with Mirror Plant

m Logical Thinking Al, employing reinforcement learning, explains the
rationale behind operational decisions.

® Results: The system achieved operational efficiency improvements of 40%
compared to manual operation by operators.




Mirror Plant @ Omega Simulation

® Online, rigorous, dynamic plant simulator
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Logical Thinking Al @NEC

® Reasoning model that interprets the result logically with reasons
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Al-based operation support system

The Al system reduced operational time
for changing production volumes by 40%

compared to manual operation.
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EEI Enhancing speed and efficiency of materials development
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Automarted physical model builder (AutoPMoB)

Al for automatically constructing physical models from scientific literature
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Initiatives for innovative pharmaceutical manufacturing

® US FDA
m Emerging Technology Team (ETT)

m Adopting novel manufacturing approaches involves both technical and
regulatory challenges. To address regulatory concerns at an early stage,
the FDA launched the Emerging Technology Program (ETP).

® EMA
= Quality Innovation Group (QIG)

m Supporting the transition to
iInnovative approaches in drug
development, manufacturing, Artificial Intelligencs
and quality control.

in Drug Manufacturing

EUROPEAN MEDICINES AGENCY
SCIENCE MEDICINES HEALTH

Reflection paper on the use of Artificial Intelligence (AI) in
the medicinal product lifecycle
Draft

July 2023

19 July 2023




Hﬂ FDA Draft Guidance, January 2025

® This guidance provides recommendations to sponsors and other interested
parties on the use of artificial intelligence (Al) to produce information or data
intended to support regulatory decision-making regarding safety,
effectiveness, or quality for drugs.

® Specifically, this guidance provides a risk-based credibility assessment
framework that may be used for establishing and evaluating the credibility of
an Al model for a particular context of use (COU).

Contains Nonbinding Recommendations

Draft — Not for Implementation

Considerations for the Use of Artificial Intelligence to Support
Regulatory Decision-Making for Drug and Biological Products
Guidance for Industry' and Other Interested Parties

This draft guidance, when finalized, will represent the current thinking of the Food and Drug
Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not

binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the
applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff responsible
for this guidance as listed on the title page.

Y oI AW N =



Ezl ASME Verification and Validation (V&V)

® The ASME Verification and Validation (V&V) standards provide a systematic
framework to assess the accuracy and reliability of computational models,
particularly those used in engineering simulations.

m Verification ensures that the mathematical model is correctly implemented
in the code (i.e., "solving the equations right").

m Validation checks whether the model accurately represents the real-world
system (i.e., "solving the right equations").

® These standards are widely applied in fields such as mechanical, aerospace,
and biomedical engineering to ensure confidence in simulation results used
for design, safety, and regulatory decisions.
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Eﬂ Summary

KYOTO

Al /| ML-Enabled Digital Transformation of Japan’s Process Industries
® Key messages
m Domain knowledge is crucial for data utilization and effective Al deployment.
m Generative Al and LLMs as well as ML are available for industrial use.
m Digital twins and cyber-physical systems are becoming reality.
® Recent work: limited examples
m Digital twin and cyber-physical system (CPS) for blast furnace
® In-house generative Al service
m New application discovery
m Al-Based autonomous operation and operation support system
® New materials development
m Automated physical model builder
® Evaluation of the credibility of Al models.
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